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Abstract 
Colonization and extinction dynamics are fundamental processes 
that determine species’ distributions yet nuances of these 
processes are often overlooked when trying to estimate them. In 
this study we used dynamic occupancy models to estimate how 
colonization rates vary when nearby habitat patches are occupied 
by a species of interest. Our model parameterized colonization as 
either local (i.e., occurred when a habitat patch was within 2.5 km 
and was occupied by the species of interest in the previous time 
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step) or long-distance (i.e., occurred when habitat patches within 
2.5 km were not occupied by the species of interest in the previous 
time step). We applied our model to nearly a decade of striped 
skunk (Mephitis mephitis) camera trap data collected throughout 
Chicago, Illinois, USA and quantified associations between site-level 
colonization and persistence rates and proximity to the nearest 
known stream or river, percentage of developed open space, 
urbanization, and sampling season (winter, spring, summer, and 
fall). 
 

 

Abstract photo. A black and white camera trap image from July 
2024 of a family of striped skunks in a golf course outside of 
Chicago, Illinois. 

 
We found that local colonization was lowest in the fall season and 
largely controlled by the number of nearby habitat patches 
occupied by striped skunk. Long-distance colonization was greatest 
in the fall and positively covaried with developed open space. The 
probability of skunk persistence was roughly 0.60 adjacent to 
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natural water sources and declined to 0.01 at 14.00 km from 
natural water sources. Using simulations from our best-fit model 
we determined that striped skunk occupancy was largely dictated 
by local colonization and persistence, which collectively accounted 
for about 80% of the variation in striped skunk occupancy 
throughout Chicago. Long-distance colonization during the fall 
season was likely affected by striped skunk offspring dispersing 
across the landscape. These results demonstrate that by splitting 
colonization into separate sub-processes, we can more accurately 
forecast near term changes in species distribution through space 
and time. 
 
Keywords: Bayesian statistics, camera trap, dynamic occupancy 
model, colonization, ecological forecasting, striped skunk, urban 
ecology 

 

 
Introduction 
A central goal in ecology and conservation biology is to determine where 
species are located (MacArthur 1984, Hunter and Gibbs 2006), particularly 
given increasingly fragmented and urbanizing landscapes (Mcdonald et al. 
2008). Yet, the processes that determine where a species is 
located—otherwise known as their distribution—are informed by their 
colonization and extinction rates which makes a species’ distribution 
dynamic (Yackulic et al. 2015). Two species could have identical 
distributions but vastly different colonization-extinction dynamics (Evans et 
al. 2016); thus, inferring processes that drive species distributions from 
observed distributional patterns can be erroneous (Yackulic et al. 2015). 
For example, blackbirds (Turdus merula) throughout the Palearctic region 
were historically forest specialist species that adapted to urban 
environments over time (Evans et al. 2009). Based on the distribution of 
blackbirds within cities it was largely believed that individuals from initial 
urban populations colonized other unoccupied city centers in a leapfrog 
fashion, but genetic analyses revealed that blackbirds in cities that were 
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later colonized were fully independent from the initial urban blackbird 
populations (Evans et al. 2009). Understanding colonization-extinction 
dynamics can be difficult as it not only requires data through possibly long 
time periods, but colonization and extinction rates can vary through space 
and time (Fidino and Magle 2017, Hitt and Roberts 2012), with the 
presence of other species (Fidino et al. 2019, Kleiven et al. 2023), and 
across scales (Green et al. 2019, Kleiven et al. 2023). Nevertheless, to better 
predict current and future geographic ranges of species in a rapidly 
changing world it is critical to understand their colonization-extinction 
dynamics. 
 
In metapopulation theory, spatial variation in colonization is often 
accounted for by making this process a function of patch area and 
isolation (Hanski 1998). While traditional metapopulation models perform 
well in insular environments like islands—where the space between 
patches is uninhabitable to a given species—they often fail to capture 
gradients of habitat suitability or the matrix that characterizes many 
non-insular environments (Baguette 2004, Howell et al. 2018). 
Furthermore, local versus long-distance colonization could vary in relative 
importance for species (Strona 2015). This may be particularly true if a 
species cannot make long-distance movements (e.g., various land snails) 
compared to other species that are more mobile (e.g., many bird species, 
Vélová et al. 2023). Therefore, assuming colonization only varies by patch 
size and isolation is too simplistic in many terrestrial landscapes because 
the matrix between patches is not homogenous or inhospitable (Broms et 
al. 2016). 
 
In terrestrial landscapes, colonization patterns can also be spatially 
hierarchical such that the first wave of colonization is largely driven by 
landscape context, whereas subsequent settlement in the surrounding 
area is controlled by variation in local habitat characteristics (Resetarits 
and Silberbush, 2016), predation risk at the local or regional scales 
(Resetarits 2005), and habitat connectivity (Falaschi et al. 2020). Thus, 
colonization of a patch in the future likely varies due to a species’ current 
distribution and colonization rates at unoccupied habitat patches located 
near (i.e., locally) and far from where a species currently exists. 
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The goal of this study was to quantify the relative contribution of local and 
long-distance colonization on a species distribution. To do so, we extended 
the Broms et al. (2016) dynamic occupancy model, allowing us to quantify 
whether the colonization rate of a species increases if nearby locations are 
occupied. Furthermore, as a species’ colonization rate is inherently 
governed by their natural history, we were also interested in accounting 
for seasonal differences in breeding and subsequent dispersal of offspring. 
We parameterized this model with nearly a decade of striped skunk 
(Mephitis mephitis) data collected with camera traps placed throughout 
Chicago, Illinois, USA. We selected striped skunks for this study because 
they inhabit a variety of habitat types, are relatively widespread but not 
ubiquitous on the landscape, are associated with urbanizing environments, 
and their dispersal distances and home ranges are relatively small 
compared to other synanthropic mesocarnivores (Bixler and Gittleman 
2000, Larivière and Messier 2000, Rosatte et al. 2010, Gallo et al. 2017, 
Greenspan et al. 2018, Amspacher et al. 2021, Allen et al. 2022). We fitted 
models that represented six different hypotheses about which factors 
influenced striped skunk colonization-extinction dynamics (Table 1). 
Following this, we used simulations from the best-fit model to estimate the 
relative contributions of local and long-distance colonization on the 
distribution of striped skunk throughout Chicago. This study demonstrates 
how colonization dynamics greatly vary throughout an urban region and 
that both local and long-distance colonization play important parts in 
determining skunk distributions throughout the city. 
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Table 1. Covariates, associated definitions, and summary statistics used to represent our six hypotheses 
regarding striped skunk occupancy, persistence, and colonization in Chicago, Illinois. Hypotheses for skunk 
occupancy, colonization, and persistence included testing for the strength of 1) environmental variation, 2) 
skunk natural history, 3) environmental variation and skunk natural history, 4) environmental variation but 
urbanization had a lesser effect over time, 5) environmental variation and skunk natural history, but 
urbanization had a lesser effect over time, or 6) did not vary with any of these variables (i.e., the null model). 

 Hypothesis 

Covariate Represented as Mean SD* Range 1 2 3 4 5 6 

Site 
urbanization 

PCA** of housing density, 
impervious cover, and forest 
cover within 1km of a site. 

0.00 1.45 -3.46, 
4.68 

X  X X X  

Distance to 
nearest 
stream or 
river 

How far away each site was 
to a known stream or river in 
kilometers. 

2.69 3.61 0.00024, 
14.09 

X  X X X  

Developed 
open space 

Proportion of managed lawn 
(e.g., parks) within 1km of a 
site. 

0.07 0.08 0.00, 
0.43 

X  X X X  

Species 
natural 
history and 
breeding 
phenology 

A dummy variable that 
equaled one if the sampling 
season was in the fall and 
was otherwise zero. 

NA NA NA  X X  X  

Site 
urbanization 
had a lesser 
effect over 
time 

A linear trend that increased 
by 1 after each fall sampling 
season as well as a statistical 
interaction between this 
term and site urbanization. 

NA NA NA    X X  

 

* SD = Standard Deviation 

** PCA = Principal Component Analysis. Models with this term included the first principal component from 
this dimensionality reduction technique. 
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Methods and Materials 

Biological sampling 

This study was part of an ongoing wildlife monitoring survey in Chicago, 
Illinois (Fidino et al. 2016, Magle et al. 2016). Striped skunk detection data 
came from sites along four 50-kilometer transects that radiated outwards 
from the city center to the suburbs (Figure 1, Magle et al. 2016). Sites were 
in urban greenspace within 2 km of each transect line, and all sites were at 
a minimum 1 km apart. Examples of greenspace types included natural 
areas, city parks, golf courses, and cemeteries. If a piece of greenspace was 
large enough to retain a 1 km distance between camera traps it could 
contain >1  camera trap sites. We placed one Bushnell motion-triggered 
infrared Trophy Cam (Bushnell, Overland Park, Kansas, USA) at each site 
roughly 1-1.5 m above the ground on a tree and pointed at a slight 
downward angle. We deployed cameras this way to decrease the likelihood 
of over-triggering cameras by cars on roads adjacent to sites. Cameras 
were set to normal sensitivity, to take a single photo when triggered, and 
to pause for 30 seconds after being triggered. Cameras were deployed for 
roughly 28-day sampling seasons in winter (January), spring (April), 
summer (July), and fall (October), and were checked once during the 
middle of a sampling season to change batteries or replace memory cards. 
A detailed description of site selection, study design, and species 
identification procedures can be found in Magle et al. (2016). 
 
We included data from 106 sites between 2014 to 2020 in our occupancy 
models (27 seasons) and held out data from 2021 for out-of-sample 
validation (4 seasons) to test the dynamic occupancy model's ability to 
predict the distribution of striped skunks (i.e., ecological forecasting; 
Simonis et al. 2021). Over those 27 seasons of training data, four seasons 
had no data. Three of these seasons (January 2016, July 2016, and October 
2018) had no data due to a backlog of images that still needed to be 
annotated from this long-term study (i.e., the images were collected but 
our research team has not identified the species in them yet). The fourth 
season, April 2020, had no data because we could not deploy cameras due 
to work restrictions associated with the COVID-19 pandemic. This resulted 
in a total of 23 seasons of training data. 
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Figure 1. Camera trap sites in urban greenspace throughout the Chicago Metropolitan Area and examples of 
the different processes estimated throughout our study. For the process examples, focal sites of interest are 
indicated by stars while sites considered local to a focal site are yellow dots. Sites with skunk present have a 
skunk above them. Local colonization is the probability the focal site is colonized by skunk at time t when they 
were present at a nearby (within 2.5 km) site at t-1. Long-distance colonization is the probability the focal site is 
colonized at time t when the nearby sites are not occupied at t-1. Persistence is the probability skunks occur at 
the focal site at t-1 and continue to occupy the site at time t, and is the complement of extinction (i.e., 
persistence = 1 - extinction). 

 

The model 

For this model we used variable notation from Broms et al. (2016) and a 
Bayesian approach to parameterize our model. For i in 1,…,I sites and t in 
1,…,T seasons, let zi,t be a Bernoulli random variable that equals 1 if a skunk 
is present at site i at time t and is zero otherwise. During the first sampling 
period we have no prior knowledge of site-level occupancy state. Thus, let 
Ψi be the occupancy probability at site i during the first season 
 

 

 
Initial occupancy can be a function of covariates that affect species 
occurrence via the logit link, where βψ is a vector of regression coefficients 
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and xi
Ψ is a vector of conformable covariates, where the first element is 1 

to account for the intercept. 
 

 

 
For the remaining sampling periods, we assume a first-order Markov 
process where occupancy at site i and time t depends on the species 
location at t-1.   Furthermore, following Broms et al. (2016), we split 
occupancy into three separate processes, which for this study we define as 
persistence (ϕi,t), long-distance colonization (γi,t), and local colonization (d̅i,t). 
Persistence (ϕi,t) is the probability that site i remained occupied given the 
species was present there at time t-1, and is the complement of extinction (

 such that ϕi,t = 1 - . Long-distance colonization (γi,t) is the probability ε
𝑖,𝑡

) ε
𝑖,𝑡

site i is colonized if the species was not present at the focal site or any of 
the neighboring sites at time t-1. Finally, local colonization (d̅i,t) is the 
probability site i is colonized if the species was not present at the focal site 
but was present in at least one neighboring site at time t-1. We can 
estimate these sub-processes from data by conditioning persistence on zi,t-1 
and both colonization probabilities on its complement (1- zi,t-1). Further, to 
differentiate between the two colonization probabilities we use the 

indicator function , or its complement, which equals 0 unless site i has 𝐼
𝑁

𝑖,𝑡−1

at least one occupied neighbor at time t-1. Combining these pieces 
together results in the occupancy probability for site i at time t, which we 
use in a Bernoulli trial. 
 

 

 
As with Eqn. 2, both, ϕi,t and γi,t can be made a function of covariates. 
 

 

Where the respective regression coefficients (βϕ and βγ) and vector of 
conformable covariates (xi,t

ϕ  and xi,t
γ) are defined as in Eqn. 2. However, we 
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index these two covariate vectors by both i and t so that persistence and 
long-distance colonization covariates may vary through space or time. 
 
Local colonization probability depends in part on the number of 
neighboring occupied sites at t-1 
 

 

 

where zt-1 is a vector of occupancy states across all sites at time t-1,  is 
the Hadamard product operator (i.e., element-wise product operator), mi,t-1 
is a binary vector of length I that denotes whether each site is considered a 
neighbor to site i, and di,t is a vector of length I from D, an I x I x T array that 
contains the probability site i is colonized by each other site. While the 
Broms et al. (2016) model used the queen’s definition of a neighborhood to 
determine M, we allowed for a more general sampling structure to 
determine which sites are neighbors. To do so, let M be an I x I x T binary 
array that has zeroes on the main diagonal of each MT. Furthermore, let G 
be an I x I matrix that contains the distance, in meters, between all sites 
and ht be the distance, in meters, that a species may be expected to 
disperse during a given sampling period. For many species, ht could be 
informed by their natural history (e.g., average dispersal distance), which 
could vary by season. Thus, for all elements within Mt, we determine 
neighbors as 
 

 
 
where the j index iterates through all the elements of row i and I() is an 
indicator function that equals 1 if the inequality in Eqn. 6 is true and is 
otherwise 0. In the event that there is no information on whether a species 
dispersal distance may vary over time, or if data are collected during one 
specific time of year (i.e., no seasonal variation), then ht is constant and 
therefore mi,j,t is also constant across t. 
 
Given Eqn. 6, the element-wise product of zt-1 and mi,t-1 in Eqn. 5 returns a 
vector that denotes which neighboring sites were occupied at t-1. This 
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product is then multiplied by the transposed vector log(1 - di,t)T, which 
results in the probability site i is colonized by a species given their 
presence at some number of neighboring sites (d̅i,t). 
 
Spatial or temporal complexity can also be added to di,t by making them a 
function of covariates. Following Broms et al. (2016), we use a gradient 
based colonization model where local colonization was assumed to vary 
across the landscape and through time. For a single spatial or 
spatiotemporal covariate, this would be 
 

 
Where β0

d is the intercept, β1
d is a slope term, and xi,t

d is a vector of length I 
that contains the difference of a covariate between site i and all other sites, 
scaled by the distance between the sites 
 

 
Temporal covariates are added into di,t differently as there is no gradient 
for a covariate that does not vary spatially. For example, adding a linear 

trend to Eqn. 7 would result in: . 𝑙𝑜𝑔𝑖𝑡(𝒅
𝑖,𝑡

) =  β
0
𝑑 +  β

1
𝑑𝒙

𝑖,𝑡
𝑑  +  β

2
𝑑𝑡

 
For the observational model, let yi,t be the number of secondary sampling 
units (e.g., days or weeks) a species was detected at site i on sampling 
period t and ji,t be the total number of secondary sampling units at site i 
and sampling period t. Assuming that each secondary sampling unit is an 
i.i.d. Bernoulli trial, we can treat yi,t as a Binomial random variable and 
estimate the probability of detection, ρi,t, conditional on the presence of 
the species 
 

 
which can be extended to incorporate covariates via the logit link. 
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Where the regression coefficients (βρ) and covariates (𝒙i,t

ρ) are defined 
similarly to Eqn. 4. Finally, the overall probability of detecting a species at 

least once given their presence can be derived as , which 1 − (1 − ρ
𝑖,𝑡

)𝑗
𝑖,𝑡

can be used to determine the overall detection probability across 
secondary sampling units (Garrard et al. 2008). 
 

Connecting hypotheses to distinct statistical models 

For all models, we used 2.5 km as a cutoff to define neighboring sites (Eqn. 
6), which falls within the average dispersal distance of 1 - 3 km for striped 
skunks (Rosatte and Larivière, 2003). Of our six hypotheses, four (H1, H3, 
H4, and H5) included spatial covariates (Table 1), which we added to every 
linear predictor of our model (Eqn. 2, 4, 8, and 10). We chose three 
covariates that past research identified as important determinants of 
striped skunk distribution: distance to a permanent stream or river, the 
proportion of open managed lawn within 1 km of a site (i.e., developed 
open space), and an urbanization metric which was also measured with a 1 
km buffer (explained below).  
 
We included site distance to a stream or river because these features 
function as habitat corridors through urban environments (Douglas and 
Sadler 2010), and striped skunks use riparian corridors to move across 
landscapes (Hilty and Merenlender 2004, Frey and Conover 2010). To 
calculate this metric, we indexed the geographic location of each site to the 
nearest known stream or river using the sf package in R (Pebesma and 
Bivand 2023, R Core Team 2023). Stream and river data came from the 
Illinois Department of Natural Resources (1994). This dataset excluded 
small (i.e., first-order) streams. The proportion of developed open space 
was included because striped skunks are omnivorous and acquire much of 
their dietary items in open grasslands (Greenwood et al. 1999, Gehrt 2004), 
which in cities can be approximated as developed open space like parks 
and residential yards. Developed open space data were pulled from the 
National Land Cover Database (Dewitz et al. 2021), and we used a 1 km 

 
 

© Kase et al., (2025), Stacks Journal, DOI 10.60102/stacks-25001  Page 12 of 32 

 



 

buffer around each site to quantify this metric. Finally, urbanization is a 
variable that is often negatively correlated to the distributions of many 
medium to large mammals (Magle et al. 2022). We created an urbanization 
metric with principal component analysis (PCA) using mean tree cover 
(CMAP 2018), mean impervious cover (CMAP 2018), and mean housing 
density (Hammer et al. 2004) within a 1 km buffer of each site (Fidino et al. 
2016, Magle et al. 2016, Gallo et al. 2017).  We retained the first component 
of this PCA, which explained 69.75% of the variation of the data. Loadings 
for this metric were tree cover (-0.54), impervious cover (0.64), and housing 
density (0.54). Therefore, negative values represent areas with more tree 
cover whereas positive values are areas with more housing density and 
impervious cover. 
 
In addition to spatial covariates, three hypotheses (H2, H3, and H5) had an 
additional term related to skunk natural history. We included this term 
because striped skunks breed between the late winter and early spring 
and their young disperse in the fall (Rosatte and Larivière, 2003), which can 
result in higher fall colonization rates (Fidino and Magle 2017). Therefore, 
the local and long-distance colonization linear predictors (Eqn. 4 and 7) 
included a temporally varying dummy variable that equaled 1 if a given 
sampling period occurred in the fall and was otherwise zero. 
 
Finally, two of our hypotheses (H4 and H5, Table 1) had an additional term 
to evaluate whether striped skunks have become more or less urban over 
the last decade throughout Chicago. To do so, we included a linear trend 
that increased by a value of 1 after each fall sampling season throughout 
Chicago (i.e., the number of fall seasons that have occurred since sampling 
began). We included this term and its interaction with our site urbanization 
covariate on the probability of persistence and both colonization 
probabilities (Eqn. 4 and 8). 
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Model comparison 

We compared models using out-of-sample validation and Brier scores to 
assess the predictive performance of each model (Brier 1950, Ferro 2007). 
For a single site across N seasons, the Brier score would be 
 

 
 
where N is the number of seasons, ot is whether a skunk was detected (ot = 
1) or not (ot = 0), and ft is the forecasted probability of observing this data 
point, conditional on zt-1. Because our test data is subject to imperfect 
detection, the forecasted probabilities must be a mixture of occupancy 
(eqn. 3) and detection (eqn. 10) probabilities. Thus, If ot = 1, then ft was 

. If ot = 0 then ft was . Ψ
𝑖,𝑡

(1 −  (1 −  ρ
𝑖,𝑡

)
𝑗

𝑖,𝑡 (1 − Ψ
𝑖,𝑡

) + Ψ
𝑖,𝑡

(1 −  ρ
𝑖,𝑡

)
𝑗

𝑖,𝑡

Four seasons of detection data were held out from the initial models and 
used to test against the model forecasts across Chicago. We calculated 
Brier scores for each out-of-sample datapoint across the entire posterior 
distribution of each model, and then compared the median Brier scores 
among models to evaluate their relative predictive ability. 
 

Prior specification and model fitting 

For each model we monitored all logit-scale intercept and slope terms for 
initial occupancy, local colonization, long-distance colonization, 
persistence, and detection. All parameters were given uninformative 
Logistic(0, 1) priors, which are uniform on the probability scale. Each model 
was run for 50,000 iterations with 10,000 burn-in samples across four 
chains for a total of 160,000 posterior samples with no thinning. To 
determine model convergence we inspected posterior samples with 
traceplots and ensured Gelman-Rubin diagnostics were < 1.1 for all 
parameters (Gelman et al. 2014).  All models were fitted in Program R 
version 4.4.3 using the nimble package (de Valpine et al. 2017). 
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We used two methods to quantify the strength of an association between 
model covariates and each population process. First, we calculated 95% 
credible intervals and determined whether they overlapped zero. Second, 
when there was less certainty in the direction of effect based on the 
bounds of the 95% credible intervals (i.e., they overlapped zero), we 
calculated the overall probability of an effect as the proportion of the 
marginal posterior that was greater or less than zero, depending on the 
direction of effect (Makowski et al. 2019). All data and code to recreate our 
analysis can be found on GitHub at https://github.com/anna-kase/skunk/. 
 

Quantifying the relative importance of local colonization, 
long-distance colonization, and persistence on skunk 
occupancy 

To quantify the relative contribution of local colonization, long-distance 
colonization, and persistence on striped skunk occupancy we simulated 
skunk distributions across our study area for 12 primary sampling periods 
across 1000 posterior samples of the best fit model. To do so, we 
generated a grid of possible habitat patches spaced 1000 m apart. At each 
point we queried the same spatial covariates used in our model, and 
scaled each identically to the data used to fit our models. We used rook 
neighborhoods to determine if a site was nearby so that the maximum 
number of possible neighbors (4) was similar to the maximum number of 
neighbors in our data. For the first season, we simulated initial occupancy 
at each site. Following this, we used the dynamic portion of our best fit 
model to estimate local colonization, long-distance colonization, or 
persistence depending on the location of occupied sites during the 
previous time step. Finally, for each simulation and sampling season we 
tracked the number of times local colonization, long-distance colonization, 
and persistence was triggered based on the distribution of skunks in the 
previous timestep, which we used as a proxy for the relative contribution 
each of these processes has on skunk distributions throughout Chicago. 

 

 Results 
Our training data represented 23 primary sampling periods between April 
2014 and October 2020. We collected 53,542 camera trap days out of a 
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possible 68,264 sampling days (assuming 106 sites x 23 sampling periods x 
28 days of sampling). An average of roughly 70 cameras were operational 
per season. We detected skunk on 1326 days. The mean naïve occupancy 
across seasons was 0.19 (min = 0.00, max = 0.37). Overall, striped skunks 
were detected at least once at 74 of the 106 sites between April 2014 and 
October 2020.   
 
Based on Brier scores our third hypothesis was most supported (Table 2), 
which included our three spatial covariates and a life history term that 
accounted for change in colonization rates over the fall (Table 2). On 
average, skunk initial occupancy was low (0.09, 95% CI = 0.03, 0.20) and 
decreased the further a site was from a stream or river (β𝞧

river = -1.43, 95% 
CI = -3.50, -0.06). There was an 0.83 probability that initial occupancy 
decreased with urbanization (β𝞧

urb = -0.32, 95% CI = -1.06, 0.35), and an 0.68 
probability initial occupancy was lower with increasing developed open 
space (β𝞧

open space = -0.17, 95% CI = -1.00, 0.56). 

 

Table 2. Brier scores for each hypothesis model. Brier scores closer to zero 
indicate a more accurate model forecast. 

Model Brier Score 

H3: Spatial Covariates + Fall 0.68 

H1: Spatial Covariates 0.70 

H5: Spatial Covariates + Fall + Year 0.70 

H4: Spatial Covariates + Year 0.71 

H2: Fall Covariate 0.79 

H6: Intercept Only 0.82 

 

 As with initial occupancy, we found a strong negative relationship between 
skunk persistence and distance to a stream or river (β𝜙

river = -1.35, 95% CI = 
-2.28, -0.57), though average persistence rates were higher (0.34, 95% = 
0.23, 0.45). Persistence was 2.2 times higher (95% CI = 1.36, 4.32) at sites 
within 100 m of a stream or river than sites ≥3700 m from a stream or river 
(i.e., roughly 1000 m further than the average distance between a site and 
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a stream or river, Figure 2B). We did not find an association between skunk 
persistence and urbanization (β𝜙

urb = 0.02, 95% CI = -0.29, 0.33) or 
developed open space (β𝜙

open space = 0.09, 95% CI = -0.18, 0.38; Figures 2A,C, 
respectively). 
 

 

Figure 2. Probability of striped skunk persistence, ϕi,t, in relation to three spatial covariates; urbanization, 
distance to a stream or river (kilometers), and proportion of developed open space. Persistence probabilities 
were unaffected by site urbanization and proportion of developed open space. Persistence probabilities 
decreased the further a site was from a stream or river. 

  
On average, long-distance colonization was lower in the spring, summer, 
and winter (0.07, 95% CI = 0.05, 0.09) than it was in fall (0.17, 95% CI = 0.12, 
0.22; βγ

fall = 0.98, 95% CI = 0.51, 1.45). Furthermore, we found a strong 
positive relationship between long-distance colonization and developed 
open space (βγ

open space = 0.59, 95% CI = 0.29, 0.93). During the spring, 
summer, and winter as the proportion of developed open space among 
sites increased from 0.00 to 0.43 — which represented the range we 
observed in our data — long-distance colonization increased about 13 
times from 0.04 (95% CI = 0.03, 0.06) at 0.00 developed open space to 0.55 
(95% CI = 0.23, 0.86) at 0.43 developed open space (Figure 3). 
Long-distance colonization increased 7.35 times in the fall from 0.10 (95% 
CI = 0.06, 0.15) at 0.00 open space to 0.76 (95% CI = 0.44, 0.94) at 0.43 open 
space. There was an 0.95 probability that long-distance colonization 
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decreased with increasing distance to a stream or river (βγ
water = -0.26, 95% 

CI = -0.59, 0.05) and a 0.74 probability long-distance colonization decreased 
with urbanization (βγ

urb = -0.08, 95% CI = -0.30, 0.15). 
 

 
Figure 3. Probability of striped skunk long-distance colonization, γi,t, in relation to three spatial covariates; 
urbanization, distance to a stream or river (kilometers), and proportion of developed open space, by season. 
Probability of long-distance colonization was greater in the fall relative to the other three seasons (spring, 
summer, and winter) for all spatial covariates. Effect sizes for urbanization and distance to a stream or river 
were lower compared to the proportion of developed open space. As the proportion of developed open space 
increased the probability of striped skunk long-distance colonization increased. 

  
The average number of neighboring sites across our study was 1.28 (min = 
0, max = 4). Overall, we found that the probability of local colonization was, 
on average, far greater than long-distance colonization except for in the 
fall (Figure 4, βd̅

fall = -0.84, 95% CI = -1.77, -0.03). When skunks occupied one 
site within 2.5 km of other sites, the probability of local colonization was 
0.29 (95% CI = 0.22, 0.37) in the spring, summer, and winter and 0.15 (95% 
CI = 0.07, 0.27) in the fall (Figure 4). However, the probability of 
colonization increased as the number of neighboring sites with skunks 
increased. For a site with four neighboring occupied sites, local 
colonization was 0.75 (95% CI = 0.63, 0.84) in the spring, summer, and 
winter and 0.48 (95% CI = 0.24, 0.72) in the fall. We did not find an 
association between local colonization and urbanization (βd̅

urb = 0.08, 95% 

 
 

© Kase et al., (2025), Stacks Journal, DOI 10.60102/stacks-25001  Page 18 of 32 

 



 

CI = -1.25, 0.52), distance to a stream or river (βd̅
water  = -0.19, 95% CI = -2.37, 

1.92), or developed open space (βd̅
open space  = 0.03, 95% CI = -0.53, 0.62). 

 

 
Figure 4. Probability of striped skunk local colonization and the number of occupied neighboring sites by 
season. As the number of occupied neighbors increased, the probability of local colonization also increased. 
Overall, local colonization probabilities were greater in the spring, summer, and winter compared to fall. We 
also included the average probability of long-distance colonization in this figure (i.e., 0 neighboring occupied 
sites). 

  
On average the daily probability of detecting a skunk given their presence 
was 0.11 (95% CI = 0.10, 0.12). Thus, given an average 28 days of sampling, 
the probability skunks were detected at least once given their presence 
was 0.97 (95% CI = 0.95, 0.97). Skunk detection probability increased with 
urbanization (βρ

urb = 0.19, 95% CI = 0.11, 0.27) as well as developed open 
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space (βρ
open space = 0.15, 95% CI = 0.08, 0.21). There was only a 0.67 

probability that detection probability decreased with distance to water 
(βρ

water = -0.03, 95% CI = -0.16, 0.09). 
 
Based on our simulations we found that local colonization and persistence 
contributed most to skunk occupancy, particularly in spring, summer, and 
winter, whereas long-distance colonization generally contributed less 
(i.e.,<20%) to skunk occupancy (Figure 4). We mapped the average 
expected occupancy of skunks in our study area using occupancy 
estimates (n=12 simulated primary sampling periods; Figure 4A), variation 
in skunk occupancy among simulated primary sampling periods (Figure 
4B), and a bivariate choropleth representation of expected occupancy and 
variation in occupancy (Figure 4C). These results indicated that skunks 
often occupy the northern and southern suburbs of Chicago, where their 
occupancy is high and there is low variability in occupancy across seasons. 
However, the southwestern suburbs also saw intermittent occupancy by 
skunk, where they had lower occupancy but much higher variability across 
sampling periods.  
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Figure 5. Simulated striped skunk distributions for Chicago, Illinois and surrounding suburbs based on 12 
simulated primary sampling periods across 1000 posterior samples of the best fit model (H3). A) Average 
expected occupancy probability. B) Standard deviation of average occupancy probability across simulated 
primary sampling periods where higher values indicate areas with greater temporal variability in occupancy. C) 
Bivariate choropleth representation of expected occupancy and variation in occupancy. This sub-figure can be 
used to see, for example, areas that are high in occupancy and low in temporal variability, which indicates 
locations that skunks regularly occupy. D) Relative contribution of persistence, long-distance colonization, and 
local colonization to striped skunk occupancy. 
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Discussion 
Overall, colonization processes were driven primarily by striped skunks 
moving into neighboring unoccupied habitat patches between seasons 
(i.e., local colonization in this study). However, in the fall, long-distance 
colonization also played an important role in the spatial distribution of 
occupied habitat patches. These two findings align with our third 
hypothesis, i.e., striped skunk occupancy is governed by environmental 
variation and their natural history. With respect to skunk natural history, 
female striped skunks are philopatric and remain near natal dens while 
males may disperse farther in the fall (Talbot et al. 2012, Brashear et al. 
2015). Thus, young female striped skunks are likely establishing dens in 
areas surrounding natal locations, corresponding to local colonization in 
our model. Male skunks are largely intolerant of other males and will 
typically den alone or visit communally denning females (Theimer et al. 
2016). This creates a demand for non-competitive domains potentially 
pushing males farther to colonize distant areas and contributing to the 
increased probability of long-distance colonization in the fall observed in 
this study. Unfortunately, because striped skunks are not sexually 
dimorphic, we could not evaluate this hypothesis with our camera trap 
data. Nevertheless, splitting colonization into separate sub-processes in a 
dynamic occupancy model provided unique insights into processes 
affecting skunk spatial distribution. This division of colonization processes 
may be particularly useful for species whose dispersal processes are not 
fully known, as is the case for many species.  
 
In addition to being higher in the fall, long-distance colonization was also 
positively associated with the amount of developed open space like city 
parks and yards. Developed open space is favorable for striped skunks as 
invertebrate prey items are typically abundant in managed lawns that 
characterize these areas (Rosatte et al. 2010). Additionally, developed open 
space may provide a bounty of anthropogenic resources like water, 
discarded food scraps, or pet food (Rosatte et al. 2010). As areas with 
greater-than-average amounts of developed open space are highly likely to 
be colonized by skunks, these areas may function as staging points for 
further colonization into adjacent habitat patches. Areas with abundant 
developed open space also had high skunk persistence rates, especially if 
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they were near streams or rivers. Thus, these findings indicate that 
developed open space is an important feature for understanding and 
predicting population level processes for this species. 
 
One critical aspect affecting animal distributions we could not portray in 
our model was the relationship between local or long-distance colonization 
events and any source-sink dynamics for skunks throughout Chicago. In a 
source-sink metapopulation, both high-quality (i.e., source) and low-quality 
(i.e., sink) habitat patches help maintain population stability (Foppen et al. 
2000). Theoretically, sink habitats can function as refuges where 
individuals persist so long as the population remains connected to other 
populations (Howe et al. 1991). In turn, sink habitats can increase a 
species' overall abundance on the landscape and increase the survival of 
dwindling metapopulations (Howe et al.1991). As it may be possible to 
identify source habitat from species distribution models (Şen et al. 2024), 
we suggest that these areas are likely located along streams outside of the 
city of Chicago, which have relatively high and stable occupancy patterns 
through time (Figure 4). What we are uncertain of, however, is whether 
local or long-distance colonization contribute more towards this species 
residing in sink habitats, or what qualities these habitats possess. While we 
do know local colonization occurs more often, demographic or genetic 
studies conducted both near and far from skunk source habitats could 
further clarify the roles of local and long-distance colonization on 
source-sink dynamics for this metapopulation (Minnie et al. 2018).  
 
While we attributed the lack of environmental variation in local 
colonization to the natural history of striped skunks, other factors may 
have influenced this outcome. First, while our camera transects covered a 
broad range of environmental variation from downtown Chicago outward 
to 50 km, not every potential habitat patch for skunks was surveyed. Thus, 
there were undoubtedly unsampled habitat patches where skunks resided 
adjacent to monitored ones, which likely influenced how we should 
interpret long-distance colonization in our model. It may be that a 
colonization event detected on our cameras was not truly long-distance. 
Thus, it may be safer to assume that long-distance colonization is 
effectively random colonization, as it could have occurred from any 
location other than neighboring habitat patches that were surveyed, 
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regardless of distance. As always, it is critical to consider how a given study 
design may impact model interpretation. 
 
Additionally, we potentially failed to find effects of environmental variation 
on local colonization due to how the model was constructed. We used a 
gradient-based approach in this analysis, which compared differences in 
the environmental covariates between a site of interest and its 
surrounding neighbors (eqn. 8). It may be that skunks do not compare the 
relative quality of habitat patches, which is what our gradient based 
approach quantified. For others interested in using this modeling 
framework we suggest two ways to adjust local colonization if the 
gradient-based approach is insufficient. First, the model could be 
simplified by using a homogeneous local colonization rate by removing 
environmental covariates from this level of the model (i.e., an 
intercept-only model for local colonization). Such a specification would still 
allow for changes in local colonization if the number of occupied 
neighboring patches differs but assumes no environmental variation in this 
rate. Second, local colonization could be extended to include the actual 
local habitat covariate values themselves, instead of or in addition to the 
differences of these variables between sites (Broms et al. 2016). While the 
current model formulation we used represents a middle ground in terms 
of complexity, numerous options are available to those interested in better 
tailoring this model to a species’ natural history or a specific study area.  
 
Even though the goal of this study was to uncover the relative roles local 
and long-distance colonization have on a species distribution, our results 
could also be applied to mitigate human-wildlife conflict. Striped skunks 
are generally considered an undesirable species to humans as they can 
damage property, particularly lawns and golf courses with their foraging 
activity (O’Donnell and VanDruff 1983, Rosatte et al. 2010). Striped skunks 
also have the reputation of defensively spraying domesticated dogs, 
leading to increased wariness from pet owners (O’Donnell and VanDruff 
1983, Rosatte et al. 2010), and can be a public health concern as skunks 
may carry diseases that could affect people and pets like rabies (Blanton et 
al. 2010). Therefore, by determining where striped skunks are and where 
they might colonize and persist on the landscape appropriate 
management actions may be taken, from posting informational signage in 
public spaces to identifying areas to monitor for disease concerns. 
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Management strategies could further be tailored depending on whether 
skunk occupancy is high, low, frequent, or intermittent. For example, 
educational programs may only be necessary in areas where skunk 
occupancy is either low or intermittent as people living there may be less 
familiar with the species. Conversely, local ordinances that could reduce 
the likelihood of skunk denning on people’s property may be used in 
conjunction with educational programs in parts of the city where skunk 
occupancy is high and frequent (Merkle et al. 2011). These methods of 
mitigating wildlife conflict can be applied to other species and may be 
particularly useful for other synanthropic species.   
 
For those interested in using this modeling approach with their own data, 
it is important to consider the scarcity of the study species on the 
landscape and the amount of data needed to parameterize this model. 
This is because there must be sufficient data for all processes to estimate 
their associated parameters (Mckann et al. 2013). For example, if only a 
small number of long-distance colonization events are observed, 
estimating spatial variation in this process would be difficult. In our study 
striped skunks were relatively rare. Thus, our analysis required a larger 
sample size, as rare species in general have low detection probabilities 
(Kowalski et al. 2015, Fidino et al. 2020). To overcome this, we leveraged 
nearly a decade-long time series that collected samples four times per 
year. While we were able to achieve an average 0.97 total detection 
probability with our study design, low species detection probabilities can 
make it difficult to accurately predict ecological processes (Neilson et al. 
2018, Stewart et al. 2018, Emmet et al. 2021). While we do not suggest that 
a decade’s worth of data is required to fit this model, we encourage others 
to strongly consider their sample size with respect to the number of 
transitions they may see between time periods (i.e., unoccupied to 
occupied, and vice versa). As dynamic occupancy models are already data 
hungry, this version, which further extends the colonization process, is 
even more so (Mckann et al. 2013). 
 
Although we identified a top predictive model, the Brier score of our best 
fit model indicated there was substantial room for improvement. 
Undoubtedly, there was unexplored heterogeneity in skunk distribution 
that could be identified by considering additional covariates, their 
interactions, non-linear relationships, or spatiotemporal autocorrelation 
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(Tredennick et al. 2021). Adding these terms and increasing model 
complexity is challenging, however, as many ecological time-series do not 
have sufficient data to estimate the effect of many covariates at once 
(Teller et al. 2016, Tredennick et al. 2021). Conversely, the distribution of 
skunks may have changed between our training (2014 - 2020) and test 
(2021) data, and so the forecasts did not perform well on the test data 
(Simonis et al. 2021). Regardless, our best fit model outperformed a null 
model, suggesting some utility in forecasting skunk distributions.   
 
Overall, this modelling framework proved useful to disentangle species 
distributional patterns from population processes. Using a long-term 
camera-trapping dataset, we show that the relative contribution of local 
versus long-distance colonization on spatial distribution differs for striped 
skunks. By using species detection data to evaluate colonization behavior 
in a more nuanced way, we provide a valuable tool for conservation and 
management that can help elucidate the natural history of wildlife in 
fragmented habitats. 
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