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Abstract
This study introduces a model to assess wildlife space use and
activity patterns, demonstrated in the context of small-scale
cannabis cultivation in the western United States. We examined
local wildlife space use and diel activity patterns at a gradient of
distances to active small-scale (<1 acre) private-land outdoor
cannabis farms. We used data from 149 cameras on and
surrounding eight cannabis farms in the Klamath-Siskiyou
Ecoregion in southern Oregon, collected between 2018–2019.
Using single species occupancy analyses, we assessed how
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cannabis production influenced occupancy (defined here as space
use) and detection (defined here as a combination of detectability
and space use intensity) of 13 wild and one domestic animal
species in our study area. We also developed and used multi-state
diel models on nine of these species to assess degree of
nocturnality along a gradient of distances to cannabis production.

Abstract photo. Image of a mountain lion on a cannabis farm,
captured on remote camera for this study.

We found that 8 of 14 species in single-species models responded
to presence of cannabis farms in either their use of space or in
intensity of use, and 6 of 9 species in the diel models altered
nocturnality in relation to cannabis production, though the
responses for both models were species-specific. Our results
suggest three main types of responses to cannabis production:
avoidance, attraction, and mixed. Some species (e.g., black-tailed
deer) used space near cannabis farms less, and became more
nocturnal closer to farms. Other species (e.g., gray fox) increased
space use near cannabis farms, and became less nocturnal closer
to farms. Finally, some species displayed behavioral tradeoffs (e.g.,
California and mountain quail), and displayed site-specific patterns
of use. Additionally, our results suggest that cannabis development
may trigger opposing diel responses in larger and smaller bodied
animals, where species such as black bear or black-tailed deer
become more nocturnal close to farms, but other smaller species
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become less nocturnal. The success of our modeling approach in
revealing nuanced wildlife responses to land use change highlights
its potential utility for evaluating novel disturbances and informing
mitigation measures.

Keywords: agricultural frontier, camera trap, diel models,
hierarchical Bayesian models, human disturbance, occupancy
models, rural development, working lands

Introduction
Wildlife response to disturbance across landscape gradients is complex, as
animals adjust behaviorally in both space use and activity patterns (e.g.,
physically avoiding a disturbance, or becoming more nocturnal around
disturbance sources) (Frid and Dill 2002; Gaynor et al. 2018; Van Scoyoc et
al. 2023). Disturbances are heavily context-dependent, affecting species
differently — attracting some or deterring others — and leading to
contractions or expansions in species assemblages and interactions (Fidino
et al. 2021; Padilla and Sutherland 2021; Van Scoyoc et al. 2023;
Mendenhall et al. 2014; Schmitz, Krivan, and Ovadia 2004; Y. Wang, Smith,
and Wilmers 2017). Such changes, particularly if they involve keystone
species, can influence ecosystem function (Estes, Terborgh, and Brashares
2011; Power et al. 1996; Prugh et al. 2009). In turn these responses can
impact ecosystem health, effectiveness of wildlife management strategies,
and human-wildlife conflict (Alberti et al. 2020; Wilkinson et al. 2020;
Crespin and Simonetti 2019). Thus, ongoing assessment of disturbance
effects on wildlife is essential to develop effective management strategies
and policies.

Agricultural production of cannabis (Cannabis sativa and C. indica)
represents an ideal opportunity to study wildlife response to land use
disturbance. In the U.S., state-level legalizations of recreational cannabis
initiated a rapid land use expansion of both licensed and unlicensed
outdoor cannabis production (Butsic et al. 2018; Parker-Shames 2023). This
rapid land use change was particularly noticeable in rural areas of the
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western United States. Influenced by its illicit history, outdoor cannabis
during early legalization was often grown in remote, biodiverse regions
with minimal other non-timber agriculture (Corva 2014; Butsic and Brenner
2016; Butsic et al. 2018; Parker-Shames et al. 2022; 2023). Regardless of
individual legal status, private land cannabis farms were typically smaller
than those of other commercial crops and were clustered in space,
creating a unique land use pattern of small points of development
surrounded by less developed land (Butsic et al. 2018; Butsic and Brenner
2016; I. Wang, Brenner, and Butsic 2017; Parker-Shames et al. 2022). This
pattern of development means that cannabis was often grown in small
rural-residential areas on the edge of or intermixed with large tracts of
forest, meadow, or scrub lands (Butsic et al., 2018; Parker-Shames et al.
2022). This is a somewhat rare characteristic for agriculture in the United
States (but see Parker-Shames et al. 2022 for comparisons to other
agricultural systems).

Previous studies have raised many concerns about the cannabis industry’s
potential effects on wildlife (Wartenberg et al. 2021; Carah et al. 2015).
Some studies suggest that cannabis production may lead to habitat
destruction or modification (Wartenberg et al,. 2021; Carah et al., 2015)
and to wildlife death due to toxicant use and poaching (Carah et al. 2015;
Gabriel et al. 2012; Levy 2014; L.N. Rich, McMillin, et al. 2020). However,
most studies of direct impacts of cannabis farming have largely been
conducted on illegal public land production sites (so-called “trespass
grows”), as opposed to private land sites, which, regardless of license
status, share many common qualities that are different from public land
production.

Not only have private land sites likely experienced the largest production
increases due to legalization, they are also often characterized by very
different production practices (and therefore risks to wildlife) than public
sites (Arcview Market Research 2016; Butsic et al. 2018; Klassen and
Anthony 2019; Parker-Shames et al. 2022). For example, on many private
land farms, indirect sources of disturbance to wildlife such as noise and
light are more common than direct causes of mortality. Private land sites
(whether licensed or unlicensed) may use high-powered grow lights, drying
fans, and visual barrier fencing, which could create potential wildlife
disturbance (Rich, Baker, and Chappell 2020; Rich, Ferguson, et al. 2020).
Such practices are less common on public lands. As cannabis production
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expands, particularly in the licensed industry, these forms of indirect
impact may be more typical of cannabis production overall. Indeed,
indirect effects of production practices on wildlife space use and activity
patterns is a common concern for other agricultural crops (Ferreira et al.
2018), and may also interact with direct effects on mortality (Muhly et al.
2011).

Given that cannabis is a lucrative crop (one of the top five grossing crops in
California, the top agricultural-producing state in the US, per the USDA)
(Dillis et al. 2022) that is also expanding globally (Chouvy 2019; Wartenberg
et al. 2021), it is critically important to study both indirect and direct effects
of cannabis production on wildlife communities, particularly on private
lands where research is lacking. This understanding would be useful for
management and policymaking because regulations around cannabis
production are still being implemented and modified under the process of
legalization.

Predicting how wildlife communities will react to cannabis agriculture as a
rapid land use change at a local level is difficult and requires
understanding multiple interacting mechanisms (Alberti et al., 2020; Padilla
& Sutherland, 2021; Power et al., 1996). For example, some species may
alter space use to avoid farms, or be attracted to them as food or shelter;
some may use cannabis farms more intensively as they live or forage on
site, while others may move rapidly through; some species may use farms
during the day while others may become more nocturnal on site. And each
species may react differently for each of these mechanisms, developing
permutations of classic avoidance, attraction, and mixed responses
depending on context (Frid and Dill 2002; Gaynor et al. 2018; Van Scoyoc et
al. 2023).

Wildlife researchers have developed tools to assess spatial and temporal
responses to disturbance separately (e.g., occupancy modeling and activity
overlap profiles) (MacKenzie et al. 2002; Ridout and Linkie 2009). Recently,
there have been additional efforts to combine both spatial and temporal
responses into integrated models that allow researchers to examine
temporal responses along a spatial gradient (Rivera et al. 2022). Combining
traditional occupancy models with diel analyses, these multistate diel
occupancy models (MSDOMs) are critical to disentangle the complexities of
wildlife response to disturbance (Rivera et al. 2022). However, MSDOMs
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are new, and often require a large amount of data, so have not yet been
widely used.

This study builds on and expands from preliminary research presented in
Parker-Shames et al. (2020) to assess wildlife space use and activity
patterns on and surrounding small-scale cannabis production as a novel
application of the MSDOM approach. We deployed arrays of wildlife
cameras to observe animal space use on and surrounding active
small-scale cannabis farms on private land in a region of the Western
United States. We modeled wildlife responses using single-species
occupancy models and our novel multi-state diel occupancy models that
we developed for this study (SSOMs and MSDOMs). In doing so, we asked
the following questions: (1) How does wildlife space-use and space-use
intensity change as a function of distance to cannabis farms? and, (2) How
does wildlife nocturnality change as a function of distance to cannabis
farms? We predicted that the majority of species would avoid cannabis
farms spatially, and that those that did not would either increase
nocturnality or decrease their space use intensity near to cannabis farms.

Our research provides a baseline for understanding potential space use
and activity pattern effects of private land cannabis production on wildlife
in rural areas, and demonstrates a novel application of the MSDOM
approach. Given that there are multiple potential pathways of impact, this
study generates hypotheses about mechanisms of effect for future study.
In addition, it will provide insights into whether localized effects on wildlife
happening directly at production sites may influence broader surrounding
communities (Parker-Shames et al., 2020). While this work is focused on
rural cannabis farming, our approach and methodology may be broadly
useful for other studies of wildlife and disturbance.

Methods and Materials

Study area

We based our study in Josephine County, southwestern Oregon (42.168,
-123.647), from July 2018 – September 2019, three years after statewide
recreational legalization took effect. Josephine County was an ideal
location to capture the start of cannabis expansion post-legalization in a
rural, biodiverse legacy production region (i.e. areas with a history of illicit
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and medical cultivation, see Parker-Shames et al. 2023). Our study area
was situated amidst the biodiverse expanse of the Klamath-Siskiyou
Ecoregion, an area of globally significant ecological richness (D. Olson et al.
2012; D. M. Olson et al. 2006). The ecoregion spans the Oregon-California
border and harbors critical climate change refugia (D. Olson et al., 2012; D.
M. Olson et al., 2006). Josephine County, nestled within this ecoregion,
encompasses several state or federal protected areas, comprising 68.8% of
its land. Amidst this wilderness dwell several species of concern, including
native salmonids, threatened Humboldt martens (Martes caurina
humboldtensis), fishers (Pekania pennanti), and spotted owls (Strix
occidentalis), all of which have been hypothesized to be directly or
indirectly affected by cannabis agriculture (Butsic et al. 2018; Carah et al.
2015; Gabriel et al. 2012; 2015; Thompson et al. 2014).

Unlike most other forms of agriculture in the US, outdoor cannabis, due to
its history and small scale of production, has often been grown directly
alongside or nestled within areas of high biodiversity (Parker-Shames et al.
2022; Parker-Shames et al. 2023). Southern Oregon, and Josephine County
in particular, has a long history of illicit and medical cannabis cultivation, as
well as an active presence in the legal industry in Oregon (Klassen and
Anthony 2019; Smith et al. 2019; Parker-Shames et al. 2023). Southern
Oregon became known as a prime destination for outdoor cannabis
production even before legalization, and Josephine County had the highest
number of licensed producers relative to population size in the state by
2019 (Oregon Liquor Control Commission 2019; Smith et al. 2019).
Production in the county accelerated after recreational legalization went
into effect in 2015 (Parker-Shames et al. 2022; Parker-Shames et al. 2023),
in a similar pattern to cultivation occurring across the border in northern
California, with clusters of small farms surrounded by undeveloped or less
developed rural land (Parker-Shames et al. 2022; Butsic et al. 2018; Butsic
and Brenner 2016; Smith et al. 2019; I. Wang, Brenner, and Butsic 2017).
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Figure 1. Map of study area with local population centers identified. The study
sites are indicated as USGS hydrologic unit code 12 sub watersheds within
Josephine County, southern Oregon. All wildlife cameras were contained within
these three watersheds and are summarized at this scale to anonymize
specific farm locations. From the top down, the sub watersheds are: Slate
Creek, Lower Deer Creek, and Lower East Fork Illinois River. Map reproduced
from Parker-Shames et al. 2020.
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Our study area consisted of farms spread across three sub-watersheds
(Slate Creek, Lower Deer Creek, and Lower East Fork Illinois River; defined
by USGS hydrologic unit code 12) in Josephine County (Fig. 1). We set
cameras at 1,110 m to 2,470 m above sea level. The study area included a
mix of vegetation types, including open pasture, serpentine meadows, oak
woodland, and mixed conifer forest, as well as low density rural
development. Rainfall in this region varied seasonally and by elevation,
with an average of 82.7 cm annually (Borine 1983). Mean temperatures
ranged between 3.9-20.6°C in 2018–2019 (NOAA
https://www.ncdc.noaa.gov/cdo-web/).

Wildlife camera surveys

We placed cameras on cannabis farms and in surrounding properties to
capture a localized landscape gradient. The small-scale, private-land
cannabis farms used in this study included one licensed recreational
production site, one medically licensed (though non-compliant) production
site, and six unlicensed sites. All farms were producing cannabis for sale,
though in different markets depending on their access to licensed markets.
We selected these eight cannabis farms because they: (1) were
representative of the size and style of cultivation predominant in Josephine
County in the years immediately following recreational legalization in 2015
(Parker-Shames et al. 2022; Parker-Shames et al. 2023), (2) were all
established after recreational legalization except for the medical farm, (3)
did not replace other plant-based agriculture, (4) granted us permission to
set up cameras on site, and (5) were located next to a large section of
unfarmed land (e.g., Bureau of Land Management, private, or timber lands)
that could grant researchers access in order to place cameras across a
gradient of distance to cannabis farms. Sampled farms were small
(typically < 1 acre) and had been created by some form of clearing for
production space. Three had constructed a fence or barrier around their
crop. Specific land use practices and production philosophies differed
among farms (e.g., pesticide use, type of fencing, presence of dogs,
number of people working on the site, attitudes towards conservation). We
cannot disclose precise farm locations, as per our research agreement for
access.

Monitored farms were clustered within each watershed: one farm in Slate
Creek, five in Lower Deer Creek, and two in Lower East Fork Illinois River;
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however, most farms were also located near other nearby cannabis farms
that were not directly monitored in this study but were incorporated into
covariate calculations (see Covariates below). We placed un-baited motion
sensitive cameras (Bushnell E3, Bushnell Aggressor, or Moultriecam
models) on cannabis farms as well as in random locations up to 1.5 km
from the monitored farms. This is an expansion on previous camera
research that only assessed on-site wildlife at these same farms
(Parker-Shames et al., 2020). The surrounding context locations included
private fields and trails, uncultivated spaces near non-cannabis gardens,
private timber lands, outdoor recreational venues, and Bureau of Land
Management lands. Randomized locations included three hemp fields next
to cannabis farms. Hemp is the same species as cannabis but is regulated
differently and in this region at the time of the study was produced in
almost an identical fashion to cannabis, aside from typically using fewer
fences. While we did not count these sites as cannabis themselves, they
were located directly next to cannabis farms and so function similarly to
them in the models as a low distance to cannabis.

We placed cameras approximately 0.5 m from the ground to capture
animals roughly 1 kg and larger (e.g. squirrels). We set cameras to take
bursts of 2 photos, with a quiet period of 15 seconds. To guide the
placement of cameras, we overlaid the area surrounding each cannabis
farm cluster with a grid of 50 x 50 m cells and then selected a random
sample of at least one quarter of grid cells (a minimum of 45 stations in
each watershed). We selected a 50 x 50 m cell size because we wanted to
be able to detect fine scale space use responses of wildlife. The random
sample was stratified by vegetation openness and distance to cannabis
farm in all watersheds, and additionally by distance to clearcut in the Slate
Creek watershed, such that cameras were placed in proportion to the
landscape attributes and a distance gradient was achieved. When a
selected site was inaccessible, we selected a new one that met the same
stratification criteria. We rotated 15-20 cameras through the sampled grid
cells more or less continuously from July 2018 – September 2019, ensuring
each camera was deployed for at least one round of two-week duration.
Because of rotations and field constraints, all cannabis sites were not
monitored at the same time or for the same length of time (one to six
rounds, with on-farm cameras monitored the most intensively) but each
watershed was sampled for at least two different seasons. Altogether, we
monitored a total of 149 camera stations for a combined 6,545 trap nights.
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We then employed a team of researchers trained to identify wildlife found
in the study area to catalog photos by species.

Covariates
We calculated spatial and descriptive covariates to use in the SSOMs and
MSDOMs (here we present them by data format and processing method
but see Table 1 and Analyses below for specific assignment in modeling
processes). We selected a primary covariate that addressed our main
question of interest (i.e., the influence of cannabis production on wildlife),
as well as covariates that might explain general space use, space use
intensity, or detection patterns. We chose not to include characteristics
about individual farms, which vary in their particular agricultural practices,
as the focus of the study was to understand the effect of small-scale
cannabis farms in the aggregate on wildlife.

First, we calculated spatial distance covariates from each site. Our main
covariate of interest was distance to cannabis farms. To calculate distance
to cannabis, we used the location data for participating farms in our study
and augmented them with mapped data on Josephine County cannabis
farms from 2016 aerial imagery so that distance to cannabis would not be
limited to only participating farms (Parker-Shames et al. 2022). We then
calculated the minimum Euclidean distance from each camera to its
nearest cannabis farm using the package sf (Pebesma 2018) (v. 1.0.6) in R
(R v. 2021-11-08 “Ghost Orchid”) (R Core Team 2021) using Rstudio (v.
2021.09.1 + 372) (Rstudio Team 2021). We transformed distance to
cannabis using a square root to help fit potential thresholds in wildlife
responses. Next, we again used the sf package, this time to calculate the
distance from each camera to the nearest paved road, using this as a
proxy for overall human impacts since in our study areas, human
development and activity was concentrated along paved roads.

For our two raster-based covariates, we used the raster (Hijmans 2022) (v.
3.5.15), and exactextractr (Baston 2021) (v. 0.7.2) packages in R. We
calculated the proportion of forested land cover within a 50 m buffer
around each camera and extracted the elevation in meters at each camera
site to capture topographic and vegetation features that often influence
animal habitat (Reilly et al., 2017).
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We also included non-spatial covariates in our analyses. We generated
mean activity indices for dogs and humans by calculating the number of
observations of humans or dogs, respectively, at each camera within the
previous three days, divided by the number of days the camera was active.
We chose an interval of three days to capture a time period that might
reasonably affect wildlife while balancing data needs. This produced an
activity rate where the beginning or end of placement rounds were on the
same relative scale as all other days, and allowed us to examine the
influence of dog and human activity (which was not limited to cannabis
farms) directly across sites. We also included a covariate for Julian date of
each interval, as well as Julian date squared, to capture seasonal peaks. We
then included an estimated distance at which a camera could still detect an
animal (generally lower in dense vegetation and higher in open sites),
which was measured at camera setup.

All continuous variables were scaled so that they centered on 0 with a
standard deviation of 1 (though Date2 was not scaled again after squaring
Date) and checked for correlations (Pearson’s correlation, r<0.6) in R.

Finally, we used additional categorical covariates to account for potential
effects of geographic region and camera function. Each camera was in one
of three regions based on USGS Hydrologic Unit 12 watersheds, such that
Region1 represents Lower Deer Creek, Region2 for Lower East Fork Illinois
River, and Region3 for Slate Creek. We created a binary variable for camera
type. We gave a 0 to camera models that generally performed well in our
study system (Bushnell Aggressors) and a 1 to older models (Bushnell E3s
and Moultriecams). We also assigned a binary code based on the number
of misfires (inadvertent camera triggers with no animal in the frame,
usually the result of waving vegetation) that occurred at each placement,
because a high misfire rate indicated that cameras might be more likely to
miss an animal moving in front of it. We assigned cameras with a low
number of misfires (<20 over the two-week placement) a 0, and those with
a high misfire rate (>20) a 1, based on the natural break in the data.
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Table 1: Covariates used for SSOMs and MSDOMs.

Covariate Source Model process1

Region Generated for this study, binary intercepts representing
the following watersheds: (1) Lower Deer Creek, (2) Lower
East Fork Illinois River, and (3) Slate Creek

Space use

Distance to
cannabis*

Calculated distance to nearest cannabis farm, using
mapped data on surrounding cannabis farms from 2016
imagery (Parker-Shames et al., 2022) combined with
location data on farms participating in this study

Activity/detectability
and Space use

Elevation* 10 m DEM (Oregon Department of Forestry) Space use

Forest* Proportion of a 50 m buffer around each camera that is
covered by forested land cover (National Land Cover
Database 2016)

Space use

Distance to
paved road*

Distance to nearest paved surface road (Oregon
Department of Forestry)

Space use

Camera type Binary classification generated for this study Activity/detectability

Camera view
distance*

Estimated distance that a camera can detect an animal,
measured at camera setup

Activity/detectability

Misfires Binary classification generated for this study Activity/detectability

Date and Date2* Julian dates generated for this study Activity/detectability

HAI and DAI* Human and Dog activity indices, generated for this study
(see text for details)

Activity/detectability

1We refer to the occupancy process as space use and the detection process as activity/detectability. See
Analyses for details.
* All continuous covariates were scaled and checked for correlations. See text for more details.

Analyses

We assessed the local space use of wildlife in response to cannabis
production using single-season site occupancy models, SSOMs. We then
examined how cannabis production influences wildlife nocturnality by
fitting multi-state diel models, MSDOMs. The use of occupancy models to
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assess space use is becoming more common in wildlife response studies,
as even traditional uses of occupancy modeling are influenced by wildlife
space use (Neilson et al. 2018; Nickel et al. 2020). However, typical of most
camera-based studies, our application of occupancy models knowingly
violates several assumptions of traditional occupancy models: first,
because cameras were spaced relatively close together compared to the
home range of species included in the study, we have likely violated the
assumption of independent cameras (i.e. spatial sampling units); second,
as a result of the aforementioned spacing as well as sampling across two
years (which was long enough that individuals may move in and out of the
study area), we likely violated the model’s assumption of geographic and
demographic closure (Mackenzie et al. 2006). We have done our best to
account for violations in closure assumptions by using a narrow interval of
replication (24 hours), which should minimize animal movement during
closed periods (see Single species models below). We also include regional
fixed effects to partially account for potential geographic dependencies
between cameras. Ultimately, our interest was in space use associations
and not estimates of occupancy, and we believe outstanding violations will
have little bearing on our results.

We interpret occupancy for the models as space use rather than true
occupancy (and therefore refer to it as “space use”). We operationalize
detection as a combination of intensity of use, and camera detectability or
error (which we refer to as “activity/detectability”). Estimating space use
(the probability that the animal uses the site at any point during the study
period) rather than occupancy means we do not make an assumption that
sites are truly closed. We then interpret the activity/detectability
probability as a combination of the probability that the species is detected
and the intensity of use of the site within its larger range (Burton et al.
2015; Neilson et al. 2018; Stewart et al. 2018). This interpretation is
common in camera-based studies (e.g. Nickel et al. 2020; Suraci et al.
2021). We proceed while being careful to acknowledge where appropriate
that any covariate’s influence on activity/detectability probability is a
combination of its effect on detection and the intensity with which an
animal uses a given space. In addition, we have taken care to include
variables in the activity/detectability process to account for what we
anticipate to be the largest sources of variation in detectability, so that the
other variables should primarily influence detections via their effects on
space use intensity.
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Note that we include distance to cannabis in both space use and
activity/detectability processes in our models. Because we are using these
processes to examine two different facets of animal behavior—space use
and space use intensity—including our covariate of interest in both
processes allows us to examine differing types of behavioral responses to
disturbance within the same model. It is common to include covariates in
both submodels in a variety of occupancy modeling approaches, as the
model’s hierarchical structure allows for the effects of covariates on
detection and occupancy to be estimated separately.

Site occupancy models

Our first main objective was to examine animals’ space use in relation to
distance from cannabis farms. To do so, we conducted SSOM analyses on
13 wild and one domestic species (see provided data) (MacKenzie et al.,
2002). We summarized species observations on and surrounding cannabis
farms and created detection histories (i.e., tables where a “1” indicated the
species was photographed at a given camera station during the respective
24-hr time interval when the camera was active in a given round, a “0” that
it was not, and an “NA” for inactive periods between sampling rounds)
using the package CamtrapR (CamtrapR v. 2.0.3) (Niedballa et al. 2016) in
program R. We used a 24-hr time interval because our focus was on
estimating space use associations instead of occupancy (see Analyses
above), and a short interval reduced the likelihood of the same individual
animal being detected on neighboring cameras (Latif, Ellis, and Amundson
2016; Steenweg et al. 2018).

We modeled the space use probabilities of the most commonly detected
wild species and one domestic species, including: black bear (Ursus
americanus), black-tailed deer (Odocoileus hemionus), bobcat (Lynx rufus),
coyote (Canis latrans), gray fox (Urocyon cinereoargenteus), black-tailed
jackrabbit (Lepus californicus), raccoon (Procyon lotor), striped skunk
(Mephitis mephitis), California ground squirrel (Otospermophilus beecheyi),
gray squirrel (Sciurus griseus), wild turkey (Meleagris gallopavo), California
quail (Callipepla californica), mountain quail (Oreortyx pictus), and domestic
dog (Canis lupus familiaris) using the NIMBLE and nimbleEcology packages
in Program R (de Valpine et al. 2017; Goldstein et al. 2020). We selected
these species because they had sufficient detections to model (see
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provided data), and because they covered a range of functional groups,
including predators and mesopredators (bear, coyote, bobcat, gray fox,
raccoon), omnivores (bear, gray fox, striped skunk, raccoon), large and
small prey (deer, jackrabbit, squirrels, turkey, quails), and a domestic
predator (dog). We included dogs as an added check on our modeling
approach, as their general distributions and associations are already well
known in the study system, unlike wildlife species.

We modeled the observed data (ys) as a binary variable where 1 was an
observation for a given species at camera station s, and 0 was a
non-detection. We modeled the observed data for each species, denoted
~ Bern(zs ), as a product of both true space use (zs; occurrence) of a𝑦

𝑠
𝑝

𝑠

given species at a site and our probability of actually detecting it ( ), which𝑝
𝑠

is also influenced by intensity of use at a given site. The model assumes
that true space use is an outcome of a Bernoulli-distributed random
variable, denoted zs~ Bern( s), where s is the probability that a givenψ ψ
species used site s on any day during the survey period.

We assumed that cannabis production might influence the
activity/detectability and space use of each species differently. For space
use, we expected that increasing distance from cannabis farms would
increase animal space use (i.e., due to avoidance of cannabis farms) for all
species except domestic dogs. We also expected that elevation and
forested land cover would influence space use based on their importance
in other wildlife studies (e.g., Reilly et al., 2017). We expected proximity to
paved roads to negatively affect space use, and to function as a proxy for
other non-cannabis forms of human land use, including residences, in our
study system. Finally, we accounted for potential regional differences in
the three watersheds by including a fixed effect of region (parameterized
as region-specific intercepts). Therefore, we constructed the space use
submodel as follows:

Equation 1

𝑙𝑜𝑔𝑖𝑡 ψ
𝑠( ) = β1 × 𝐼 𝑅𝑒𝑔𝑖𝑜𝑛1 𝑠[ ]( ) +  β2 × 𝐼 𝑅𝑒𝑔𝑖𝑜𝑛2 𝑠[ ]( ) +  β3 × 𝐼 𝑅𝑒𝑔𝑖𝑜𝑛3 𝑠[ ]( )

                 + β4 × 𝐶𝑎𝑛𝑛𝑎𝑏𝑖𝑠 𝑠[ ] +  β5×𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛[𝑠] +  β6×𝐹𝑜𝑟𝑒𝑠𝑡[𝑠]

]                 + β7×𝑅𝑜𝑎𝑑𝑠[𝑠
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Where I(RegionX[s]) is an indicator variable equal to 1 if site s is in Region X,
and 0 otherwise, Cannabis is the square root of distance to cannabis,
Elevation is the elevation in meters at the camera site, Forest is the
proportion of area around each camera site that is forested within a 50 m
buffer, and Roads is the distance from the nearest paved roadway. All
continuous variables were scaled.

For activity/detectability, we expected that increasing distance from
cannabis farms would increase intensity of use (e.g., due to temporal
avoidance on farms leading to lower activity rates closer to cannabis) for all
species except domestic dogs. Separately from the general influence of
cannabis farms themselves, we expected increased recent activity rate of
dogs and humans to decrease intensity of use for all wild species (Nickel et
al. 2020; Reilly et al. 2017). We further expected time of the year to
influence intensity of use, based on seasonal changes in activity patterns
(Furnas and McGrann 2018). Finally, we expected that the camera model,
view distance (how far the camera can detect an animal), and number of
misfires of each camera setup might influence its ability to detect animals.
Therefore, we constructed the activity/detectability submodel as:

Equation 2

𝑙𝑜𝑔𝑖𝑡 𝑝
𝑠( ) =  α0 +  α1×𝐶𝑎𝑛𝑛𝑎𝑏𝑖𝑠 𝑠[ ] +  α2×𝐻𝐴𝐼 𝑠[ ] +   α3×𝐷𝐴𝐼 𝑠[ ]

                       +  α5×𝐷𝑎𝑡𝑒2 𝑠[ ] + α6×𝑇𝑦𝑝𝑒 𝑠[ ] +  α7×𝑉𝑖𝑒𝑤 𝑠[ ] +  α8×𝑀𝑖𝑠𝑓𝑖𝑟𝑒𝑠 𝑠[ ]

Where Cannabis is the square root of distance to cannabis, HAI and DAI are
activity indices for humans and dogs respectively, Date is the julian date,
Date2 is the julian date squared, Type is a binary grouping of camera type,
View is the estimated distance at which a camera can still detect an animal,
and Misfires is the number of misfires. All continuous variables were
scaled.

We fit our models using a Bayesian Markov-chain Monte Carlo (MCMC)
method in R using the NIMBLE and nimbleEcology packages (de Valpine et
al., 2017; Goldstein et al., 2020). We used weakly informative prior
distributions (normal distributions with mean 0 and standard deviation 5)
for all space use and activity/detectability parameters (Gelman et al. 2008).
Space use and activity/detectability parameters were calculated from three
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chains run for 10,000 iterations, with a burn in of 200 and thinned by 1. We
assessed model convergence by examining trace plots and R-hat values
(<1.1) for parameter estimates. We considered parameter estimates as
meaningful (i.e. the Bayesian analogue of “significant”) when their 95%
credible interval did not overlap zero.

We evaluated model fit using posterior predictive checks. Looping over
MCMC iterations with a thinning interval of 20, we simulated a new dataset
from the model based on that iteration's parameter values and calculated
the deviance of the full model for the simulated dataset. We then
compared the posterior mean deviance of the model estimated with the
true data to the distribution of simulated deviances and calculated a
Bayesian p-value as the fraction of simulated deviances greater than the
posterior mean deviance. If this p-value was outside the interval (0.05,
0.95), this indicates that the observed value was extreme relative to
expectations based on model structure, which we interpret as evidence of
poor model fit.

Multi-state diel models

Our second major objective was to examine animals’ temporal activity
patterns and degree of nocturnality in relation to distance from cannabis
farms. Following Rivera et al. (2022), we estimated multi-state diel
occupancy models (MSDOMs) (Appendix Table 1). We modeled the diel
occupancy probabilities of the following species: black bear, black-tailed
deer, bobcat, coyote, gray fox, black-tailed jackrabbit, raccoon, striped
skunk, and domestic dog using the NIMBLE package in R. For the MSDOMs,
we excluded squirrels, turkey, and quail, because they are primarily diurnal
species.

The MSDOM extends the site occupancy model, replacing the binary
occupancy (present/not present) and detection (observed/not observed)
states with a multi-state framework representing nighttime and daytime
use. The MSDOM considers nighttime and daytime occupancy separately,
allowing covariates to influence occupancy differently during the night and
day. For each site, we constructed a multi-state detection history as
follows. In each 24-hour observation period at each site, a species was
assigned one of four detection states indicating whether the species was:
(1) not observed at all, (2) only observed during the day, (3) only observed
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at night, or (4) observed both during the day and at night. Multi-state
detections are categorically distributed as:

Equation 3

𝑦
𝑖𝑗

~𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝑃
𝑧

𝑖
, 1:4

)

where detection probabilities are determined based on the latent state .𝑧
𝑖

This latent state is itself categorically distributed as

Equation 4

𝑧
𝑖
~𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(ψ

𝑖
)

where is a vector of length 4 where the nth element, , gives theψ
𝑖

ψ
𝑖,𝑛

probability that the true occupancy state of site i is n. Mirroring the
detection states, there are four true occupancy states: (1) the site is not
occupied by the species, (2) the site is occupied by the species only during
the day, (3) the site is occupied by the species only at night, and (4) the site
is occupied by the species during both the day and night. The multi-state
occupancy probabilities are associated with covariates using aψ

𝑖

multinomial logit link, as

Equation 5

ψ
𝑖,𝑛

= ϕ
𝑖,𝑛 

/ 
𝑛=1...4

∑ ϕ
𝑖,𝑛

ϕ
𝑖,1

= 1

𝑙𝑜𝑔(ϕ
𝑖,2

) = 𝑥
𝑖
β𝐷𝑎𝑦

𝑙𝑜𝑔(ϕ
𝑖,3

) = 𝑥
𝑖
β𝑁𝑖𝑔ℎ𝑡

𝑙𝑜𝑔(ϕ
𝑖,4

) = 𝑥
𝑖
β𝐷𝑎𝑦 + 𝑥

𝑖
β𝑁𝑖𝑔ℎ𝑡

where is a vector of site-level covariates influencing occupancy, are𝑥
𝑖

β𝑁𝑖𝑔ℎ𝑡

coefficients representing the effect of each covariate in on nighttime𝑥
𝑖

occupancy, and are the effect coefficients of those covariates onβ𝐷𝑎𝑦

daytime occupancy. The vector contained the same covariates used in𝑥
𝑖

the site occupancy models previously (Eqn. 1).
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The 4x4 detection matrix was parameterized following Equation 3 in𝑃
Rivera et al. (2022). Briefly, daytime and nighttime probabilities are each
associated with covariates as

Equation 6

𝑙𝑜𝑔𝑖𝑡(𝑝
𝑖𝑗

𝐷𝑎𝑦) = 𝑤
𝑖𝑗

α𝐷𝑎𝑦

𝑙𝑜𝑔𝑖𝑡(𝑝
𝑖𝑗

𝑁𝑖𝑔ℎ𝑡) = 𝑤
𝑖𝑗

α𝑁𝑖𝑔ℎ𝑡

where is the probability that the species is detected only during the𝑝
𝑖𝑗

𝐷𝑎𝑦

day given that it only occupies the site during the day, and is linked to

daytime coefficients and a vector of covariates influencingα𝐷𝑎𝑦 𝑤
𝑖𝑗

detection, and equivalently for nighttime detection. Then, the elements of
the detection matrix are

Equation 7

Pij = [1 0 0 0 1 − 𝑝
𝑖𝑗

𝐷𝑎𝑦 𝑝
𝑖𝑗

𝐷𝑎𝑦 0 0 1 − 𝑝
𝑖𝑗

𝑁𝑖𝑔ℎ𝑡 0 𝑝
𝑖𝑗

𝐷𝑎𝑦 0 (1 − 𝑝
𝑖𝑗

𝐷𝑎𝑦)

](1 − 𝑝
𝑖𝑗

𝑁𝑖𝑔ℎ𝑡) 𝑝
𝑖𝑗

𝐷𝑎𝑦(1 − 𝑝
𝑖𝑗

𝑁𝑖𝑔ℎ𝑡) (1 − 𝑝
𝑖𝑗

𝐷𝑎𝑦)𝑝
𝑖𝑗

𝑁𝑖𝑔ℎ𝑡 𝑝
𝑖𝑗

𝐷𝑎𝑦𝑝
𝑖𝑗

𝑁𝑖𝑔ℎ𝑡 

The multistate diel occupancy formulation can be used to compute an
index of nocturnality at a given site

Equation 8

θ
𝑖

=
ψ

𝑖,3

ψ
𝑖,2

+ψ
𝑖,3

+ψ
𝑖,4

which can be interpreted as the probability that the species occupies site i
only at night, given that it is present. Values of closer to 1 indicate theθ

𝑖

model prediction that the species uses the site strictly at night, while
values close to 0 correspond to a species using the site strictly during the
day. As in the SSOM, we interpret camera-level occupancy as space use
and detection probabilities as incorporating both imperfect detection
probabilities and intensity of use.

We aim to investigate whether a species’ nocturnality varies with distance
to cannabis. This corresponds to the derivative of with respect toθ

𝑖

distance to cannabis, , which is a deterministic function of the daytime𝑑θ
𝑑𝑐
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and nighttime effects of cannabis on occupancy and a given distance to
cannabis, c (see Appendix S2 for the full equation and derivation). This
value depends on the level of c, though not on the level of other covariate

data. For each species, we obtain posterior distributions of for levels of𝑑θ
𝑑𝑐

c representing distances of 0 m, 100 m, and 1000 m from cannabis. If the
95% credible interval of at least one of these quantities did not contain
zero, we interpreted that as evidence that proximity to cannabis influences
the degree to which the species uses space nocturnally.

We fit MSDOMs for each of nine species in NIMBLE using 3 chains of
10,000 iterations with a burn-in period of 200 samples. We used weakly
informative priors (normal distributions with mean 0 and standard
deviation 2.5) for all detection and occupancy parameters. For all species,
all stochastic nodes had an effective sample size of at least 190 and a
Gelman-Rubin diagnostic of at most 1.06. For each species, we interpret

the posterior distributions of and make predictions of nocturnality over𝑑θ
𝑑𝑐

a grid of distances to cannabis for visualization. We evaluated model fit
using posterior predictive checks as for SSOMs.

Results
We detected 41 individual non-human species and species groupings (e.g.,
“rodents”) for a total of 20,083 detections. We mainly detected common
species such as black-tailed deer, jackrabbit, squirrels, gray fox, turkey,
coyote, etc., as well as domestic animals such as dogs, cats, and horses
(see provided data). However, we did document other more elusive species
such as ringtail (Bassariscus astutus) and spotted skunk (Spilogale gracilis),
as well as a single sighting of a porcupine (Erethizon dorsatum) and a fisher.
We detected humans more frequently than any domestic or wild animal,
particularly on and surrounding cannabis farms. The number of wild
species detected at least once at each site was relatively evenly spread
across the gradient of distances to cannabis farms and the species we
selected for modeling were detected relatively frequently and on at least
10% of cameras, aside from bobcats, raccoons, and California quail, which
were detected on at least 6% of cameras (see provided data).
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Site occupancy models
For the SSOMs, space use and activity/detectability varied by species
(Appendix Table 1, Fig. 2). Recall that for our models, we interpreted
occupancy as space use, and activity/detectability as a combination of
detectability and space use intensity (see Analyses above) (Nickel et al.,
2020; Suraci et al., 2021). Six species had a meaningful space use response
to cannabis farms (i.e., their 95% credible interval for distance to cannabis
did not overlap zero). Deer, raccoon, California quail, and mountain quail
space use probability increased with distance from cannabis farms,
indicating potential avoidance. Domestic dogs, as expected, decreased in
predicted space use with distance to cannabis farms. Interestingly, gray fox
space use probability also decreased with distance from cannabis farms,
indicating that these species may be more likely to be found on and
around cannabis farms (Fig. 2).

Seven species had a statistically meaningful activity/detectability response
to cannabis farms (Appendix Table 1, Fig. 3). As expected, deer and ground
squirrel activity/detectability probability increased with distance from
cannabis farms, indicating that they used areas further from cannabis
farms more intensively. For ground squirrels, this means that although
they did not seem to avoid cannabis farms, they may use the spaces
farther from farms more intensively. Again as expected, domestic dog
activity/detectability probability decreased with distance from cannabis
farms, confirming that they spent most of their time on and surrounding
cannabis farms, though overall activity/detectability was low. Surprisingly
however, jackrabbit, raccoon, California quail, and mountain quail
activity/detectability also decreased with distance from cannabis farms. As
a reminder, given our modeling approach, frequent activity/detectability
on occupied cannabis farms means that these species also likely have used
the space on and surrounding cannabis farms more intensively (Fig. 3).

The other model covariates aside from cannabis cultivation also varied by
species (Appendix Table 1). For all species except bobcats, at least one
regional intercept was meaningfully associated with space use probability.
Elevation predicted space use for gray squirrels, ground squirrels, turkeys,
and striped skunks. Forest proportion predicted space use for jackrabbits,
tree squirrels, ground squirrels, and dogs. Paved roads predicted space
use for gray squirrels, California quail, and dogs. All activity/detectability
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covariates were meaningful for at least some species. All species had at
least one credibly non-zero covariate for detectability, which included
camera type, view distance, and misfires. There was evidence for seasonal
effects, with date and date2 meaningfully predicting activity/detectability
for half of the study species. The activity indices had meaningful, and
somewhat surprising results. Bobcats were negatively associated with
human activity, and gray squirrel activity/detectability was negatively
associated with dog activity. However, deer, jackrabbit, and striped skunk
activity/detectability probabilities were all positively associated with human
activity, while bobcat, coyote, gray fox, and jackrabbit activity/detectability
probabilities were all positively associated with dog activity.

Figure 2. Predicted space use probabilities of each single species model to the covariate for distance from
cannabis farms. Probabilities correspond to Region 1 with all other covariates held at mean conditions. The
species with solid lines in blue (deer, gray fox, ground squirrels, tree squirrels, and domestic dogs) all had a
credibly non-zero response (the 95% credible interval of the coefficient representing the effect of cannabis on
space use did not overlap zero). The gray regions represent the 95% credible intervals for the estimated
probabilities, but note that credible intervals for predicted space use probabilities are not the same as
credible intervals for the parameter estimates themselves, and incorporate uncertainty in the intercept as
well as the relationship between distance to cannabis and space use (see Appendix Table 1 for
parameter-specific uncertainties). Animal silhouettes from phylopic.org (Mountain Quail by Dr.
Palomo-Munoz).
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Figure 3. Predicted activity/detectability response of each single species model to the covariate for distance
from cannabis farms. Probabilities correspond to Region 1 with all other covariates held at mean conditions.
The species with solid lines in blue (deer, bobcat, jackrabbit, striped skunk, ground squirrel, and domestic
dog) all had a credibly non-zero response (the 95% credible interval of the coefficient representing the effect
of cannabis on activity/detectability did not overlap zero). The gray regions represent the 95% credible
interval for the estimated probability, but note that credible intervals for predicted space use probabilities
are not the same as credible intervals for the parameter estimates themselves, and incorporate uncertainty
in the intercept as well as the relationship between distance to cannabis and activity/detectability (see
Appendix Table 1 for parameter-specific uncertainties). Animal silhouettes from phylopic.org (Mountain Quail
by Dr. Palomo-Munoz).

Multi-species diel models
For the MSDOMs, six species meaningfully altered their nocturnality in
response to distance from cannabis farms (Fig. 4). Bear and deer
nocturnality decreased with distance to cannabis farms, indicating that
they were most nocturnal on and surrounding cannabis farms. Bobcat,
gray fox, jackrabbit, and dog nocturnality all increased with distance to
cannabis farms, indicating that their activity patterns on and surrounding
cannabis farms were more diurnal. While point estimates of nocturnality
were imprecise due to difficulty in estimating the intercept (Fig. 4), our
derivative-based approach to assessing change in nocturnality with respect
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to distance to cannabis allowed us to assess the relationship with
confidence.

Across all MSDOMs and SSOMs, Bayesian p-values generated from
posterior predictive checks were within the interval (0.5, 0.95), indicating
no evidence of poor model fit.

Figure 4. Predicted nocturnality response of each single species diel model to the covariate for distance from
cannabis farms. Probabilities correspond to Region 1 with all other covariates held at mean conditions. The
species with solid lines in blue (bear, deer, bobcat, fox, jackrabbit, dog) all had a credibly non-zero response
(the 95% credible interval of the relationship between distance to cannabis and nocturnality did not overlap
zero). The gray bars represent the 95% credible interval for the estimated probability. Note that credible
intervals for predicted nocturnality probabilities at particular distances are wide, as they incorporate
uncertainty in the intercept (see Appendix Table 1 for parameter-specific uncertainties), and determination of
nonzero slopes was based on the estimate of the derivative of nocturnality with respect to cannabis use.
Animal silhouettes from phylopic.org (Mountain Quail by Dr. Palomo-Munoz).

Discussion
This study assessed wildlife space use and temporal responses to active
small-scale outdoor cannabis farms on private land. Our work provides a
timely baseline for understanding potential wildlife community
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consequences from an emerging land use frontier. Our application of
occupancy modeling to space use responses and diel patterns has yielded
two main conclusions: 1) even at small scales, rural cannabis farming can
affect local wildlife behavior; 2) patterns of animal responses are
species-specific, but generally fall into three categories: avoidance,
attraction, or mixed response (Fig. 5). These results have implications for
the cannabis industry and small farm strategies for conservation. For
example, our results could help inform state cannabis regulations or
criteria for wildlife-conscious farming certifications.

Cannabis production comes in many forms in different locations, and this
study does not represent all of them. This study is most applicable for
small-scale and mixed light outdoor cannabis cultivation occurring on
private lands in legacy production regions of the rural Western US. It is
very likely that larger farms would have a greater impact on wildlife than
those included in this study, or that farms developed in areas with existing
agriculture might have less, or different kinds of effects. Similarly, this was
an early snapshot of wildlife responses to disturbance, which might change
over time. Because cannabis production is often unique from other forms
of agriculture, these types of observational studies are valuable and merit
repeating in different contexts.

Overall cannabis farm effects
Eight out of 14 species modeled using SSOMs had a meaningful response
to distance from cannabis farms, either in space use or
activity/detectability, and 6 of 9 species in the MSDOMs meaningfully
changed in nocturnality in response to distance from cannabis farms. Our
hypothesis that a majority of species would avoid farms was not
supported, since the strength and direction of effects were
species-specific. However, the results imply a general ability for cannabis
farming to affect local wildlife space use and activity patterns. The
relationships between space use and activity/detectability probabilities and
distance to cannabis also indicate that there could be threshold effects
relatively close to farms where the slope of the relationship is steeper (Fig.
2; Fig. 3), though further steps would be needed to confirm this
relationship.

The variation in our results are in contrast with research from the western
US on vineyards and avocado production that indicated that wildlife used
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farmed land in seeming preference over surrounding land uses (Hilty and
Merenlender 2004; Nogeire et al. 2013). However, these other studies were
conducted in areas where the agricultural land formed a corridor through
more human-dominated land covers, which is the inverse of the landscape
studied here. Our results are similar to studies on agroforestry systems
with annual and perennial croplands, where there may be differential
responses to agricultural land use and potential for filtering responses
(Brashares 2010; Ferreira et al. 2018).

Compared to the other covariates in the models, distance to cannabis
farms meaningfully affected more species than any other covariate for
space use. It was particularly surprising that wildlife responded to the
physical land use of cannabis farms even more than human or dog activity,
given that in other systems animal space use intensity often responds
more to human activity than human footprint (Nickel et al. 2020), and is
often negatively affected by the presence of dogs (Reilly et al., 2017). This
implies that cannabis farms may combine multiple potential sources of
disturbance that wildlife may react to, and/or that the physical
modifications for cannabis farms on their own are enough to trigger
wildlife responses. More research is needed to disentangle the effects of
different types of grows (legal status, size, license type, etc.), the potential
mechanistic pathways by which cannabis farms may affect wildlife, and
how different land use practices on cannabis farms modify those impacts.
Future studies isolating potential mechanisms of deterrence and attraction
(e.g. fencing, light pollution, generator noise, dog/human residence,
trash/compost storage, configuration of land clearing, etc.) would help
elucidate some of the species-specific behaviors documented in this study.

© Parker-Shames et al., (2024), The Stacks, DOI 10.60102/stacks-24003 Page 27 of 39



Figure 5. Visual summary of results, grouped by response type categories. Only results that trended towards a
non-zero effect are represented. Symbols in blue represent credibly non-zero results. Species include deer,
bear, coyote, gray squirrel, turkey, raccoon, ground squirrel, California quail, mountain quail, bobcat, striped
skunk, gray fox, jackrabbit, and domestic dog. Animal silhouettes from phylopic.org (Mountain Quail by Dr.
Palomo-Munoz).
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Space use and temporal patterns
Overall, space use and temporal responses to cannabis were
species-specific, confirming our alternative hypothesis for individual
responses. While functional- or diet-group patterns are not as clear in this
case as in other study systems (e.g., Rich et al. 2016; Ferreira et al. 2018), a
few general patterns may be emerging as to overall types of responses
(Fig. 5). Our approach of using an occupancy modeling framework to
assess wildlife space use associations was useful to identify emerging
patterns, because it allowed us to look at space use separately from
inferences on space use intensity (although the latter is difficult to
disentangle from detectability). Adding a specific analysis of nocturnality
also allowed us to separately assess temporal partitioning. This is
important because it helps capture different types of responses: attraction
and deterrence, as well as potential behavioral shifts or mixed responses
in activity patterns (Nickel et al., 2020; Neilson et al., 2018; Burton et al.,
2015). For example, this helped identify opposing space use and
activity/detectability responses in occupancy and nocturnality.

Some species avoided cannabis by decreasing overall space use (i.e.,
occupancy, see Analyses) and activity/detectability (i.e., space use intensity
and detectability) while increasing nocturnality near to cannabis farms (Fig.
5). Deer were the clearest example, responding in all three metrics;
however, results for coyote, bear, turkey, and gray squirrels indicate they
may also lean towards an avoidance response. These species may be
physically blocked from areas close to cannabis farms by fencing, or they
may be more sensitive to disturbance. The result is somewhat surprising
given that many of these species have been associated with adaptation to
human presence in other systems (Suraci et al. 2021).

On the other hand, several species demonstrated an attraction to cannabis
by increasing space use and activity/detectability while decreasing
nocturnality near to cannabis farms (Fig. 5). The clearest example of
attraction was from domestic dogs, which was expected. Results for
bobcats, gray foxes, jackrabbits, and striped skunks indicate they may also
lean towards an attraction response. Most of the species demonstrating a
potential attraction are mesopredators, which is consistent with other
studies that demonstrate that these species are often behaviorally flexible
and able to coexist in human-dominated spaces (Suraci et al., 2021;
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Nogeire et al., 2013). The pattern of mesopredator use of human spaces is
also often explained via mesopredator release, when larger predators
avoid an area of disturbance and thereby open a niche for smaller
predators (Prugh et al., 2009). In this system, the larger predators might
include bears or coyotes, which did not have a significant space use
response though displayed other potential avoidance in space use
intensity and nocturnality (Fig.5), or mountain lions (Puma concolor), which
we were unable to model due to insufficient detections. However, all three
of these large predators were photographed at least once in the middle of
a cannabis farm (see provided data). For the only non-predator,
jackrabbits, as well as the mesopredators, it may be that cannabis farms
provide resources, or a predator shield effect (Berger 2007).

Finally, some species demonstrated a mixed response where decreased
space use near cannabis farms was matched with increased
activity/detectability (Fig. 5). This behavioral pattern was shared by
California quail and mountain quail, as well as raccoons which also
demonstrated potential decreased nocturnality near to farms. For these
species, the combination of opposing behavioral responses indicates that
while they generally avoid cannabis farms in space, the few areas that they
do use, they may use more intensively, and/or less furtively during daylight
hours. If this pattern is indeed driven by space use intensity, there are
many possible explanations—for instance, perhaps these species, in an
attempt to avoid cannabis farms, end up concentrated in smaller areas.
One species, the ground squirrel, indicated an opposite response of a
trend towards spatial attraction but a decreased space use intensity (Fig.
5). This inverted response suggests that while ground squirrels might be
attracted to cannabis farms, they use spaces nearby less intensively. This
makes sense as ground squirrels are sometimes crop pests (including for
cannabis), and so may adjust their behavioral patterns to become more
furtive to avoid removal (Hammond et al. 2019). It is interesting to note
that aside from raccoons, the species that demonstrated mixed responses
in space use and space use intensity were all diurnal species. Further
research could examine whether this behavioral tradeoff is influenced by
the limited ability of these species to shift their diel patterns (Gaynor et al.
2018).

Separately from these three general categories of response, it also appears
that there could be a relationship between animal body size and temporal
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response. The species that tended to use sites near cannabis more during
nocturnal periods, bear and deer, are also the largest species we modeled,
while smaller bodied species like gray foxes or rabbits used sites near
cannabis less during nocturnal periods. This is consistent with other diel
pattern research that has indicated larger bodied species may trend
towards being more sensitive to human disturbance (Gaynor et al. 2018).
There could also be an effect of scale for these larger animals or wide
ranging species like coyotes and bobcats, whose home ranges can extend
farther than the areas under study and might influence their mechanisms
of response to cannabis farms.

Conclusions
The results of our study hold implications for conservation and cannabis.
We find evidence for on-site overlap between small-scale outdoor cannabis
farms and local wildlife. The association of higher space use and space use
intensity of many species on or near cannabis farms suggests that some
animals may be using the farms regularly for rest and forage. The
co-occurrence of wildlife with cannabis production emphasizes the
importance of best management practices on-site for cannabis farms to
ensure that this overlap does not result in harm to wildlife. There is an
opportunity for future research to study the long-term population effects
on wildlife that share space with cannabis production. While some
research suggests that farmers perceive local wildlife as part of their
environmental stewardship towards the land, not all farmers are likely to
share the same view, and many farmers may lack resources or knowledge
of wildlife conscious farming practices (Parker-Shames et al. 2023). It is also
important to acknowledge that some of this wildlife overlap may not be
beneficial for farmers. Some of the species with higher space use or
activity/detectability rates close to farms, such as ground squirrels, quail,
or raccoons, may also cause crop or property damage for farmers.
Balancing coexistence with livelihoods will be as important for the
cannabis industry as it is with any small-scale agriculture seeking to
minimize local impacts (Crespin & Simonetti, 2019).

On the other hand, our results also demonstrate a broad ability for
cannabis agriculture to influence local wildlife. While the implied indirect
effects from cannabis farming on wildlife are, by and large, not extreme, it
emphasizes the importance of land use planning for cannabis
development, as even small disturbances in relatively undeveloped rural
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areas may influence local wildlife communities. This is valuable
information, as efforts to formulate appropriate regulation, best
management practices, or wildlife friendly certifications for cannabis are
still ongoing. More research is needed on this rapidly changing agricultural
frontier, but we hope that our research here may offer insights into an
ecologically uncertain industry.

Finally, our novel approach of applying fine scale wildlife space use and
temporal activity modeling to evaluate animal responses to disturbance is
broadly relevant beyond cannabis agriculture. The combination of
assessing space use, space use intensity, and nocturnality provides a
detailed set of information to separate out and categorize different wildlife
responses, all from a single data collection method of wildlife cameras. Our
approach is also easily modifiable and allows researchers to incorporate
different categories (e.g. crepuscular response), covariates, and scales. This
innovative modeling technique not only enhances our understanding of
wildlife behavior but also provides valuable insights for informing
conservation and management strategies across various ecosystems.
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